S 7 Mon.řtax correlation, contingentsCtable.

EXAMPLE

A) CalcCet and interpretation of the coefficient pořseries correlations.

Determine the dependence between the quality of the modified IOWA Brace test (motor talent test) and the roundabout in the group of men Tv - Sv. The order in the execution of the rondata was compiled by the teacher SG.

Students	Brace-	Rondát	dand	dand2
	test			
AND	6	2	4	16
В	5	10	- 5	25
C	8	4	4	16
D	4	5	- 1	1
E	3	3	0	0
F	10	9	1	1
G	7	6	1	1
Н	1	1	0	0
CH	2	8	- 6	36
AND	9	7	2	4
Σ 10	-	-	-	100

 d_{and} = the difference between the two orders

*r*with = Spearman's rank correlation coefficient

$$= 1 - 6 \sum_{\frac{1}{(2-1)}}^{2} \frac{1}{10(102-1)} = 0.394$$

B) Statistical significance:

In the case of a random selection from the basic set, we can calculate**Spearman's test** rank correlation and value determination *p* determine whether there is a statistically significant dependence.

After entering the data, marking them as serial and assigning categories (IBT, rondát), we continue through the selection *Analyzes* \rightarrow *Regression* \rightarrow *Correlation Matrix*

		Data	Analyses		
Ð	ploration	Ţ T-Test		Regression	Frequencies
	IBT		Rondát	Correlation	Matrix
1		6	2	Linear Regr	ression
2		5	10		
3		8	4	Logistic Regress	ion
4		4	5	2 Outcome	s
5		3	3	E outcome	Binomial
6		10	9	N Outcome	25
7		7	6	in outcome	Multinomial
8		1	1	Ordinal Ou	tcomes
9		2	8		
10		9	7		
94.94					

After assigning data to categories and selecting the Spearman test, the results are displayed in the right part.

Correlation Matrix	(\mathbf{P})	Correlation Matrix
	Q → IIBT	Correlation Matrix
	Rondát	IBT Rondát
		IBT Spearman's rho — p-value —
		Rondát Spearman's rho 0.394 — p-value 0.263 —
Correlation Coefficients	Additional Options	Note. * p < .05, ** p < .01, *** p < .001
Pearson Spearman Kendall's tau-b	Report significance Flag significant correlations N Confidence intervals	References [1] The jamovi project (2020). jamovi. (Version 1. https://www.jamovi.org.
Hypothesis	Interval 95 % Plot Correlation matrix	[2] R Core Team (2019). R: A Language and environment [Computer software]. Retrieved from <u>https://v</u>

The value of the Spearman rank correlation coefficient is 0.394.

p = 0.263. Value p > 0.05. Based on the stated values, we cannot claim that the stated dependence exists.

C) Calculation procedureCyou vE(practical) significance (efect size)

The square of the correlation coefficient is called **coefficient of determination** (r₂). Its value tells us how many percent the observed factor contributes to the resulting dependence (Kerlinger, 1972).

Coefficient of determination $r_2 = 0.394_2 = 0.155$

The quality of the rondat and the result of the Iowa Brace test, and vice versa, is only affected by 15.5%.

TASK

Find out if there is a dependence between the performance of your study group in the cycling time trial in Bukovina and the order in the credit orienteering race there. Data can be found in the table with the list of lectures and seminars (time trial and OB)

THEORY

Four-field and contingency table, 2

Four-field table:

Group	Phenomenon	Phenomenon	Σ
	occurred	did not occur	
1	(ANDo)	(Bo)	A + B
	AN	D B	
2	(C ₀)	(D ₀)	C + D
	С	D	
Σ	A + C	B + D	Ν

expected frequencies:

$$0 = \frac{(+)(+)}{(+)} \quad 0 = \frac{(+)(+)}{(+)} \quad 0 = \frac{(+)(+)}{(+)}$$

Calculation:

$$2 = \frac{(-)2}{0} + \frac{(-0)^2}{0} + \frac{(-0)2}{0} + \frac{(-0)2}{0} + \frac{(-0)2}{0}$$

EXAMPLE

These students have not been able to meet the requirements of gymnastics in the last year. Is there a difference between them? (Is success in gymnastics influenced by gender?)

1st step. ZŠ	They did it	They didn't make it	Σ
Women	80	6	86
Men	31	18	49
Σ	111	24	135

Calculation: We enter the data in one column according to gender and in the other column according to success (yes / no). We mark the data as nominal and name the columns (Gender / Success). Then we continue through the elections:

Analyzes → *Frequencies* → *Independent Samples* (2 *test of associations*)

	🗧 Data	Analyses				
E	kploration T-Te	ANOVA	Regression	Frequencies	Factor	blandr
	🔗 Pohlaví	🔗 Úspěšnost		One Sample Pro	portion Tests	
1	žena	ano		2 Outcome	c.	
2	žena	ano		2 Outcome	s Binomial test	
3	žena	ano		N Outcome	25	
4	žena	ano		χ^2 Goodness of fit		
5	žena	ano]		_
6	žena	ano		Contingency Tab	oles	
7	žena	ano		Indonondou	at Camples	
8	žena	ano		Independent Samples χ^2 test of association		10
9	žena	ano		Daired Com		
10	žena	ano		Paired Samples McNemar test		
11	žena	ano				
12	žena	ano				
13	žena	ano		Log-Linear Regression		
14	žena	ano				

Contingency Tables		$\overline{\mathbf{i}}$	Conting	jency T	ables	
	Q Rows →	h	Contingency	8 B.		
	Columns			Úspěš	inost	-
	→ Sa Úspěšnost		Pohlaví	ano	ne	Total
			žena	80	6	86
	Counts (optional)		muž	31	18	49
	→	<u> </u>	Total	111	24	135
	→ Layers		χ^2 Tests	Value	df	р
			χ ²	18.9	1	< .001
			N	135	1	< .001
✓ Statistics Tests	Comparative Measures (2x2 on	y)				
	Log odds ratio					
$\Box \chi^2$ continuity correction	Odds ratio		Referen	ces		

We assign data to rows (Rows) and Columns and check the option 2

The results are displayed on the right. The final value of the 2 test is 18.9 p <0.001. The difference between students is statistically significant, success in gymnastics is influenced by gender.

B) Calculation procedure inE(practical) importance (effect size)

Cramer's φ is evaluated as follows: φ 0, 10 small effect φ 0, 30 medium effect

 ϕ 0, 50 large effect

It is calculated according to the formula for partial correlation $=\sqrt{2}$

For the calculation in the Jam program, check the option *Phi and Cramer's V.*

Tests	Comparative Measures (2x2 only)				
$\checkmark \chi^2$	Log odds ratio	x ² Tests			
$\hfill \hfill \chi^2$ continuity correction	Odds ratio	<u></u>	Value	df	р
Likelihood ratio	Relative risk	χ ²	18.9	1	< .001
Fisher's exact test	Confidence intervals	N	135		
	Interval 95 %				
		Nominal			
Nominal	Ordinal		Val	ue	
Contingency coefficient	Gamma	Phi-coeff	icient 0.	374	
✓ Phi and Cramer's V	Kendall's tau-b	Cramer's	V 0.	374	

The result (0.374) is greater than 0.3 and therefore the observed difference is also materially (practically) significant, we are talking about a medium effect.

EXAMPLE PivotTable

We are interested in whether the marks from the Anthropomotorics exam are evenly distributed for about four consecutive years (H_0)

Years / stamp	Great	Very good	Good	Σ
2016	18	13	10	41
2017	23	13	12	48
2018	11	14	23	48
2019	8	16	29	53
Σ	60	56	74	190

When entering data, we proceed similarly to the four-field table.

Contingency Tables		\ominus	Conting	gency T	ables		
	Q Rows	<u> </u>	Contingency	Tables			
		hall			Hodnocení		
	Columns		Rok	Výborně	Velmi dobře	Dobře	Total
	→ Hodnocení 6	bal	2016	18	13	10	41
	Countr (antional)		2017	23	13	12	48
	Counts (optional)	Image: A state of the state	2018	11	14	23	48
	→	<u></u>	2019	8	16	29	53
	Layers		Total	60	56	74	190
	\rightarrow		χ^2 Tests	Value	df	р	
			χ²	20.9	6	0.002	
			N	190			
✓ Statistics							
Tests	Comparative Measures (2x2 only)		Nominal				
	Log odds ratio		12	Va	ue		
χ^2 continuity correction	Odds ratio		Phi-coeffic	ient N	laN		
Likelihood ratio	Relative risk		Cramer's V	0.	235		

p < 0.01. On the serpent of significance *99% of*we reject the null hypothesis (*H*₀) and we find that the marks are not evenly distributed in each year.

B) INE(practical) importance (effect size)

The procedure is the same as the previous calculation for the four-field table.

Cramer's φ = 0.235 we can talk about a low / medium effect.

TASK

Assess which of the study groups is better at acrobatics, when mastering the throw forward is considered a crucial element (address statistical and factual significance)

	He managed	He couldn't
TV-Z	21	11
TV-Ov	15	6